Загрязнение окружающей среды токсикантами

В статье мы постараемся ответить на все вопросы по теме: "Загрязнение окружающей среды токсикантами". Предлагаем ознакомиться и информацией от авторитетных тематических источников. Если же возникли вопросы - задавайте их дежурному специалисту.

Загрязнение среды токсикантами

Информация — Безопасность жизнедеятельности

Другие материалы по предмету Безопасность жизнедеятельности

Загрязнение среды токсикантами

Загрязнение окружающей среды можно считать наиболее ощутимым и достаточно хорошо изученным проявлением глобального экологического кризиса. Оно непосредственно связано с развитием техносферы и научно-техническим прогрессом и отражает негативные для природы аспекты этого прогресса, последствия антропогенной деятельности. Бурное развитие цивилизации в последние десятилетия обрушило на природу потоки разнообразных загрязнителей. Особенно большую опасность представляют такие загрязнители, как соединения тяжелых металлов, высокотоксичные органические компоненты, радионуклиды и другие вредные вещества.

Вместе с тем, загрязнение окружающей среды во многом является причиной глобальных изменений климата и возникновения тенденции потепления, разрушения озонового слоя атмосферы. Значительную роль загрязнение окружающей среды играет также в опустынивании и деградации земель и сокращении площадей сельскохозяйственных угодий.

Наибольшему загрязнению подвергаются воздушная и водная среды.

Проблема загрязнения воздуха не нова. Более двух столетий серьезные опасения вызывает загрязнение воздуха в крупных промышленных центрах многих европейских стран. Однако длительное время эти изменения имели локальный характер. Дым и копоть загрязняли сравнительно небольшие участки атмосферы и легко разбавлялись массой чистого воздуха в то время, когда заводов и фабрик было немного. Быстрый рост промышленности и транспорта в XX веке привел к тому, что такое количество выброшенных в воздух веществ не может больше рассеиваться. Их концентрация увеличивается, что влечет за собой опасные и даже фатальные последствия для биосферы.

Даже в США, где экономика считается достаточно чистой, в воздух ежегодно выбрасывается 150 млн. т. загрязняющих веществ.

В России масштабы выбросов значительно меньше. До снижения темпов экономического развития и кризисного состояния экономики на Российскую Федерацию, входившую тогда в состав СССР, приходилось 70 млн. т. выбросов в атмосферу при меньшем в 4 раза, чем в США, валовом национальном продукте.

В настоящее время ежегодные выбросы промышленных предприятий и транспорта России составляют около 25 млн. т.

При таких объемах выбросов в атмосферу загрязняющих веществ во многих регионах мира концентрации вредных химических веществ в атмосфере превышают допустимые. Неблагополучная экологическая обстановка складывается в значительном числе промышленных районов развитых стран. Загрязнение воздуха особенно резко проявляется в местах, где размещаются металлургические, химические и другие заводы.

Наряду с ингредиентным загрязнением окружающей среды, на формирование неблагополучной экологической обстановки существенное влияние оказывают физические поля: тепловое, акустическое, электромагнитное, радиационное и другие, уровни которых в отдельных регионах, благодаря широкомасштабному использованию в технических системах современных энергонасыщенных технологий, во много раз превышают допустимые.

Достаточно напряженная экологическая обстановка, вызванная загрязнением окружающей среды, сложилась в Японии. В 60-е годы эта страна приобрела славу заповедника экологических бедствий. Это было обусловлено наличием большого числа проблем, связанных с загрязнением воздуха, водных бассейнов, почв, чрезмерным использованием удобрений в сельском хозяйстве, с шумовыми и вибрационными воздействиями и т. п. Сейчас наиболее важной проблемой экологического характера в Японии является защита от воздействия электромагнитных полей.

На формирование глобального экологического кризиса большое влияние оказывает техногенное загрязнение водной среды. Считается, что по разным причинам в настоящее время более миллиарда человек, то есть одна шестая часть населения земного шара, лишено чистой питьевой воды. Тяжелая ситуация сложилась в Азиатско-Тихоокеанском регионе (Бангкок, Таиланд, Южная Корея, Япония), в бассейнах рек Нила, Тигра и Евфрата.

В бедственном положении в результате загрязнения находятся крупнейшие реки Европы: Рейн, Влтава, Дунай и другие. Например, в реку Дунай, в бассейне которой проживает 80 млн. людей, в течение года поступает 3 тыс. т. никеля, 14 тыс. т. марганца, 500 т. цинка, 36 тыс. т. нефтепродуктов, огромное количество хлора, нитратов, пестицидов. Причем, с годами экологическая ситуация на Дунае не улучшается, а ухудшается.

Чрезмерному загрязнению подвергаются многие моря и океаны.

В Северном, Балтийском, Средиземном и Черном морях содержится большое количество солей тяжелых металлов, нефтепродуктов, фенолов, других органических веществ. На некоторых морских акваториях, где осуществлялись сбросы радиоактивных отходов, возникающих при эксплуатации кораблей и судов с ядерной энергетикой, обнаруживаются радионуклиды, в частности цезий — 137.

Как известно, сброс радиоактивных отходов в море впервые был осуществлен в 1946 году в США. Затем сбросы начали производиться Великобританией, Японией, Нидерландами и СССР. До 197

Загрязнение окружающей среды токсикантами

Учебники для вузов

Экология и безопасность жизнедеятельности

3.1. Загрязнение окружающей среды токсикантами и количественные критерии оценки его фактического уровня

Активизация хозяйственно-производственной деятельности человека в современных условиях природопользования и глобальные масштабы ее антропогенного воздействия на главные составляющие биосферы создают ситуацию острого экологического кризиса, обусловленную деградацией объектов окружающей среды. В связи с этим для оптимизации условий взаимодействия человека с природой важной представляется роль всестороннего анализа окружающей природной среды [16], главными задачами которого является комплексная оценка экологического резерва биосферы и ее потенциальных возможностей к самовосстановлению и самоочищению, анализ широкого спектра различных типов воздействий (как приоритетных, так и не приоритетных) на природные экосистемы и изучение специфических особенностей этих воздействий [15].

В последние годы особую значимость и актуальность приобретают токсикологические аспекты всестороннего анализа окружающей среды [43, 9, 53]. Серьезной проблемой является установление пороговости эффекта токсикологического воздействия в системах «токсикант – окружающая среда» и «токсикант – живой организм» и определение зависимости «доза – ответная реакция», которая послужила активным импульсом для развития нового направления в экологии, базирующегося на фундаментальных основах токсикологической, бионеорганической и экологической химии, называемого экотоксикологией. Научная значимость экотоксикологии состоит в изучении современных представлений токсичности и канцерогенности элементов и их соединений, исследовании специфических биогеохимических особенностей поведения токсикантов в окружающей среде, механизма их распространения и метаболизма; установлении взаимосвязи между необходимостью и токсичностью элементов; определении локализации канцерогенных ионов; оценке порогового эффекта токсикологического воздействия.

Читайте так же:  Особенности привлечения к административной ответственности несовершеннолетних лиц

Подобный целостный комплекс достаточно сложных научно-прикладных задач, решение которых предусматривается в рамках экотоксикологии, в большинстве случаев позволяет произвести количественную оценку порогового эффекта токсикологического воздействия, имеющего место в системах «токсикант – окружающая среда» и «токсикант – живой организм» согласно уравнению [34]:

где Dr – доза вредного вещества, достигшая рецептора;

Do – доза вредного вещества, введенная в организм;

De и Dm – дозы вредного вещества, соответственно выделенные из организма и обезвреженные в процессе продвижения яда к рецептору.

Концепция пороговости предполагает высокое качество среды и полную безопасность для человека и любых популяций при условии загрязнения этой среды ниже определенного уровня, воздействие которого на любые организмы меньше некоторого порогового значения.

Загрязнение окружающей среды – это процесс привнесения в среду или возникновение в ней новых, обычно не характерных для нее физических, химических, биологических агентов, оказывающих негативное воздействие. Существуют три этапа загрязнений: физическое (солнечная радиация, электромагнитное излучение и т.д.), химическое (аэрозоли, тяжелые металлы и т.д.), биологическое (бактериологическое, микробиологическое). Каждый тип загрязнения имеет характерный и специфичный для него источник загрязнения – природный или хозяйственный объект, являющийся началом поступления вещества-загрязнителя в окружающую среду. Различают природные и антропогенные источники загрязнения.

Основные природные источники поступления токсикантов в окружающую среду – ветровая пыль, лесные пожары, вулканический материал, растительность, морские соли.

Антропогенные источники – это первичное и вторичное производство цветных металлов, стали, чугуна, железа; добыча полезных ископаемых; автомобильный транспорт; химическая промышленность; производство меди, фосфатных удобрений; процессы сжигания угля, нефти, газа, древесины, отходов и др. Антропогенный поток поступления токсикантов в окружающую среду превалирует над естественным (50–80%) и лишь в некоторых случаях сопоставим с ним.

В качестве критериев количественной оценки уровня загрязнения окружающей среды могут быть использованы индекс загрязнения, предельно допустимая, фоновая и токсическая концентрации.

Индекс загрязнения (ИЗ) – показатель, качественно и количественно отражающий присутствие в окружающей среде вещества-загрязнителя и степень его воздействия на живые организмы.

Предельно допустимая концентрация (ПДК) – количество вредного вещества в окружающей среде, которое при постоянном контакте или при воздействии за определенный промежуток времени практически не влияет на здоровье человека. Предельно допустимые концентрации веществ, загрязняющих биосферу, вводились как нормирующие показатели во многих странах, в том числе и в нашей стране. Они устанавливались в приземной атмосфере, водах, почвах, растениях, продуктах питания (табл. 3.1–3.4).

Существующая система ПДК недостаточно достоверно информативна, поскольку предусматривает определение индивидуального токсиканта, дистанцируясь от вопроса о комплексном воздействии различных загрязнителей. Между тем совместное действие, например, органокомплексов тяжелых металлов кардинально меняет ПДК, экспериментально полученные для отдельного тяжелого металла.

Фоновая концентрация – содержание вещества в объекте окружающей среды, определяемое суммой глобальных и региональных естественных и антропогенных вкладов в результате дальнего или трансграничного переноса.

Под токсической концентрацией понимают либо концентрацию вредного вещества, которое способно при различной длительности воздействия вызывать гибель живых организмов, либо концентрацию вредного начала, вызывающую гибель живых организмов в течение 30 суток в результате воздействия на них вредных веществ [11].

Говоря о токсической концентрации как о своеобразном индикаторе токсичности природно-антропогенных экосистем, нельзя не коснуться и таких важных понятий в экотоксикологии, как вредное вещество или токсикант – загрязнитель, метаболизм, канцерогенез, токсичность как результат избытка необходимых веществ и соединений, биогеохимические свойства токсикантов и их химически активные миграционные формы в окружающей природной среде.

Электронная библиотека

В последние годы особую значимость и актуальность приобретают токсикологические аспекты всестороннего анализа окружающей среды.

Серьезной проблемой является установление пороговости эффекта токсикологического воздействия в системах «токсикант – окружающая среда» и «токсикант – живой организм» и определение зависимости «доза – ответная реакция». Эта проблема послужила активным импульсом для развития нового направления в экологии, базирующегося на фундаментальных основах токсикологической, биоэнергетической и экологической химии, называемого экотоксикологией.

Научная значимость экотоксикологии состоит в:

· изучении современных представлений токсичности и канцерогенности элементов и их соединений;

· исследовании специфических биогеохимических особенностей поведения токсикантов в окружающей среде, механизма их распространения и метаболизма;

· установлении взаимосвязи между необходимостью и токсичностью элементов;

· определении локализации канцерогенных ионов;

· оценке порогового эффекта токсикологического воздействия.

Вспомним несколько определений, используемых в методиках мониторинговых исследований ОС и их анализе. К ним можно отнести следующие понятия:

ü загрязнение окружающей среды – это процесс привнесения в среду или возникновение в ней новых, обычно не характерных для нее физических, химических, биологических агентов, оказывающих негативное воздействие. Существует несколько видов загрязнений;

ü основные природные источники поступления токсикантов в ОС – ветровая пыль, лесные пожары, вулканический материал, растительность, морские соли;

ü антропогенные источники загрязнения – это первичное и вторичное производство цветных металлов, стали, чугуна, железа; добыча полезных ископаемых; автомобильный транспорт; химическая промышленность и др.;

ü индекс загрязнения (ИЗ) – показатель, качественно и количественно отражающий присутствие в окружающей среде вещества-загрязнителя и степень его воздействия на живые организмы;

ü предельно допустимая концентрация (ПДК) – количество вредного вещества в окружающей среде, которое при постоянном контакте или при воздействии за определенный промежуток времени практически не влияет на здоровье человека;

Читайте так же:  Срок исковой давности о признании сделки недействительной

ü фоновая концентрация – содержание вещества в объекте окружающей среды, определяемое суммой глобальных и региональных естественных и антропогенных вкладов в результате дальнего или трансграничного переноса;

ü токсическая концентрация – это концентрация вредного вещества, которое способно при различной длительности воздействия вызывать гибель живых организмов, либо концентрация вредного начала, вызывающая гибель живых организмов в течение 30 суток в результате воздействия на них вредных веществ;

ü вредное вещество – это инородный нехарактерный для природных экосистем ингредиент, оказывающий отрицательное влияние на экосистемы и живые организмы, обитающие в них;

ü токсиканты – вещества или соединения, способные оказывать ядовитое действие на живые организмы, их классифицируют как токсичные и потенциально токсичные.

По химической природе вредные вещества, или токсиканты, бывают неорганического происхождения (кадмий, ртуть, свинец, мышьяк, никель, бор, селен, марганец, хром, цинк и др.) и органического (нитразосоединения, фенолы, амины, нефтепродукты, поверхностно-активные вещества, пестициды, формальдегид, бенз(а)пирен и др.)

В зависимости от степени токсикологического воздействия химические вещества подразделяют на три класса (табл. 15.1).

Классы опасности различных химических веществ, попадающих в почву из выбросов, сбросов и отходов

Мышьяк, кадмий, ртуть, селен, свинец, цинк, фтор, бенз(а)пирен

Бор, кобальт, никель, молибден, медь, медь, сурьма, хром

Барий, ванадий, вольфрам, марганец, стронций, ацетофенон

Наиболее приоритетными для химико-токсикологического анализа являются тяжелые металлы (свинец, ртуть, кадмий, медь, никель, кобальт, цинк), обладающие высокой токсичностью и миграционной способностью.

Определенная аналогия биогеохимических свойств некоторых тяжелых металлов позволила сгруппировать эти элементы и выявить общие закономерности их токсикологического воздействия на ОС (табл. 15.2). Рассмотрим воздействие некоторых веществ на ОС.

Медь и цинк характеризуются как наибольшей химической активностью, позволяющей считать их хорошими индикаторами терригенного стока, седиментации, так и высокой эффективностью накопления в водорослях и планктоне, что определяет их особую значимость для биоты. Они являются главными составляющими многих металлоферментов, участвующих в природной селекции аэробных клеток, в окислительно-восстановительных процессах тканей, иммунной реакции, стабилизации рибосом и мембран клеток.

Никель и кобальт – биологически активные и канцерогенные вещества. Сравнительно малая подвижность этих элементов обусловливает их достаточно равномерное распределение в природных средах.

5. ТОКСИКАНТЫ ОКРУЖАЮЩЕЙ СРЕДЫ

Химическое загрязнение является нарастающей угрозой среде обитания.

Охрана природы от нависшей над ней химической опасности стала глобальной проблемой. Она связана с производительными силами общества: с развитием промышленного и сельскохозяйственного производства, энергетики, транспорта, добычей полезных ископаемых. Все это ведет к поступлению в воздух, воду, почву сотен тысяч токсичных соединений, проникновению их в организм растений, животных и человека. Повсеместное применение различных химических веществ в быту, в сфере научных исследований также способствует нарастанию химико-экологической опасности. В продаже сейчас около 40000 различных химикатов и ежегодно к ним добавляется сотня других.

Масштабы техногенного химического загрязнения природной среды не поддаются точной оценке, однако приводимые в литературе данные свидетельствуют о дорогой цене, которую приходится платить человеку за успехи, достигнутые в ходе научно-технического прогресса. Так, за один год на Земле сжигается 7 миллиардов тонн условного топлива и выплавляется более 800 миллионов тонн различных металлов, что сопровождается выделением в окружающую среду сотен миллионов тонн вредных веществ. По данным В.А. Ковды, в биосферу уже с середины семидесятых годов ежегодно поступало 600 миллионов тонн токсичных газообразных веществ, в том числе оксида углерода (II) — 200 миллионов тонн, сернистого газа — 150 миллионов тонн, несколько миллиардов тонн различных аэрозолей, 5500 миллиардов кубических метров сточных вод.

В настоящее время под токсикантами окружающей среды понимают такие вредные вещества, которые распространяются в окружающей нас среде далеко за пределы своего первоначального местонахождения и оказывают скрытое вредное воздействие на животных, растения и впоследствии на человека.

Подлинные токсиканты — это те ядовитые вещества, которые сам человек неосмотрительно включает в круговорот природы. Основное ядро токсикантов окружающей среды составляют пестициды: это собирательное название охватывает все средства борьбы с вредными организмами.

Понятие «биоцид» часто распространяется на те биологически активные вещества, которые попадают из промышленных сточных вод в биологический круговорот веществ. Например, HCN — синильная кислота является инсектицидом, а потому также и биоцидом, но она быстро улетучивается и не может быть включена в разряд токсикантов окружающей среды.

Электронная библиотека

Активизация хозяйственно-производственной деятельности человека в современных условиях природопользования и глобальные масштабы ее антропогенного воздействия на главные составляющие биосферы создают ситуацию острого экологического кризиса, обусловленную деградацией объектов окружающей среды. В связи с этим для оптимизации условий взаимодействия человека с природой важной представляется роль всестороннего анализа окружающей природной среды, главными задачами которого являются:

· комплексная оценка экологического резерва биосферы и ее потенциальных возможностей к самовосстановлению и самоочищению;

· анализ широкого спектра различных типов воздействий (как приоритетных, так и неприоритетных) на природные экосистемы;

· изучение специфических особенностей этих воздействий.

В последние годы особую значимость и актуальность приобретают токсикологические аспекты всестороннего анализа окружающей среды. Серьезной проблемой является установление пороговости эффекта токсикологического воздействия в системах «токсикант – окружающая среда» и «токсикант – живой организм» и определение зависимости «доза – ответная реакция». Эта проблема послужила активным импульсом для развития нового направления в экологии, базирующегося на фундаментальных основах токсикологической, бионеорганической и экологической химии, называемого экотоксикологией.

Научная значимость экотоксикологии состоит в следующем:

· изучении современных представлений токсичности и канцерогенности элементов и их соединений;

· исследовании специфических биогеохимических особенностей поведения токсикантов в окружающей среде, механизма их распространения и метаболизма;

Читайте так же:  Сроки давности на доходы

· установлении взаимосвязи между необходимостью и токсичностью элементов;

· определении локализации канцерогенных ионов;

· оценке порогового эффекта токсикологического воздействия.

Подобный целостный комплекс достаточно сложных научно-прикладных задач, решение которых предусматривается в рамках экотоксикологии, в большинстве случаев позволяет произвести количественную оценку порогового эффекта токсикологического воздействия, имеющегося в системах «токсикант – окружающая среда» и «токсикант – живой организм».

Концепция пороговости предполагает высокое качество среды и полную безопасность для человека и любых популяций при условии загрязнения этой среды ниже определенного уровня, воздействие которого на любые организмы меньше некоторого порогового значения.

Загрязнение окружающей среды это процесс привнесения в среду или возникновение в ней новых, обычно не характерных для нее физических, химических, биологических агентов, оказывающих негативное воздействие. Существует три типа загрязнений:

1) физическое (солнечная радиация, электромагнитное излучение и т.д.);

Видео (кликните для воспроизведения).

2) химическое (аэрозоли, тяжелые металлы и т.д.);

3) биологическое (бактериологическое, микробиологическое).

Каждый тип загрязнения имеет характерный и специфичный для него источник загрязнения – природный или хозяйственный объект, являющийся началом поступления вещества-загрязнителя в окружающую среду. Различают природные и антропогенные источники загрязнения.

Основные природные источники поступления токсикантов в окружающую среду – это ветровая пыль, лесные пожары, вулканический материал, растительность, морские соли.

Антропогенные источники – это первичное и вторичное производство цветных металлов, стали, чугуна, железа; добыча полезных ископаемых; автомобильный транспорт; химическая промышленность; процессы сжигания угля, нефти, газа, древесины, отходов и т.д. Антропогенный поток токсикантов в окружающую среду превалирует над естественным (составляет 50 – 80 %) и лишь в некоторых случаях сопоставим с ним.

В качестве критериев количественной оценки уровня загрязнения окружающей среды могут быть использованы индекс загрязнения, предельно-допустимая, фоновая и токсическая концентрации.

Индекс загрязнения (ИЗ) – показатель, качественно и количественно отражающий присутствие в окружающей среде вещества-загрязнителя и степень его воздействия на живые организмы.

Предельно-допустимая концентрация (ПДК) – количество вредного вещества в окружающей среде, которое при постоянном контакте или при воздействии за определенный промежуток времени практически не влияет на здоровье человека. Предельно-допустимые концентрации веществ, загрязняющих биосферу, вводились как нормирующие показатели во многих странах, в том числе и нашей стране. Они устанавливались в приземной атмосфере, водах, почвах, растениях, продуктах питания.

Существующая система ПДК недостаточно достоверна, поскольку предусматривает определение индивидуального токсиканта, и не рассматривает вопрос о комплексном воздействии различных загрязнителей. Между тем совместное действие, например, органокомплексов тяжелых металлов кардинально меняет ПДК, экспериментально полученные для отдельного тяжелого металла.

Фоновая концентрация – это содержание вещества в объекте окружающей среды, определяемое суммой глобальных и региональных естественных и антропогенных вкладов в результате дальнего или трансграничного переноса.

Под токсической концентрацией понимают либо концентрацию вредного вещества, которое способно при различной длительности воздействия вызывать гибель живых организмов, либо концентрацию вредного начала, вызывающую гибель живых организмов в течение 30 суток в результате воздействия на них вредных веществ.

Говоря о токсической концентрации как о своеобразном индикаторе токсичности природно-антропогенных экосистем, нельзя не коснуться и таких важных понятий, как:

· вредное вещество, или токсикант – загрязнитель;

· токсичность как результат избытка необходимых веществ и соединений;

· биогеохимические свойства токсикантов и их химически активные миграционные формы в окружающей природной среде.

Вредное вещество – это инородный нехарактерный для природных экосистем ингредиент, оказывающий отрицательное влияние на них и живые организмы, обитающие в этих экосистемах.

Токсиканты – вещества или соединения, способные оказывать ядовитое действие на живые организмы.

Наиболее приоритетными для химико-токсикологического анализа являются тяжелые металлы (свинец, ртуть, кадмий, медь, никель, кобальт, цинк), обладающие высокой токсичностью и миграционной способностью.

Поведение этих токсикантов в различных природных средах обусловлено специфичностью их основных биогеохимических свойств: комплексообразующей способностью, подвижностью, биохимической активностью, минеральной и органической формами распространения, склонностью к гидролизу, растворимостью, эффективностью накопления. По характеру взаимодействия с различными лигандами тяжелые металлы считаются промежуточными акцепторами между жесткими и мягкими кислотами. В первом случае для них характерны низкие поляризуемость и электроотрицательность, высокая степень окисления и образование ионных связей, во втором – образование преимущественно ковалентных связей.

Показателями негативного воздействия элементов и соединений на живые организмы являются их токсичность и канцерогенность.

Токсичность и канцерогенность – это свойства элементов и соединений, отрицательно влияющие на живые организмы и приводящие к уменьшению продолжительности их жизни.

Количество, при котором химические ингредиенты становятся действительно опасными для окружающей среды, зависит не только от степени загрязнения ими гидросферы или атмосферы, но также от химических особенностей этих ингредиентов и от деталей их биохимического цикла. Для сравнения степени токсикологического воздействия химических ингредиентов на различные организмы пользуются понятием молярной токсичности, на которой основан ряд токсичности, отражающий увеличение молярного количества металла, необходимого для проявления эффекта токсичности при минимальной молярной величине, относящейся к металлу с наибольшей токсичностью.

Глобальный перенос токсикантов происходит через атмосферу и большие реки, несущие воды в океаны. Земля, ложа рек, океаны служат как бы резервуаром для скопления токсикантов.

Факторами окружающей среды, влияющими на токсичность, являются температура, растворенный кислород, показатель кислотности (рН), жесткость и щелочность воды, присутствие хелатообразующих агентов и других загрязнителей в воде.

Устойчивость живого организма по отношению к токсикантам может быть достигнута при:

1) уменьшении поступления токсиканта;

2) увеличении коэффициента выделения токсиканта;

3) переводе токсиканта в неактивную форму в результате его изоляции или осаждения.

Канцерогенез – это способность металла проникать в клетку и реагировать с молекулой ДНК, приводя к хромосомным нарушениям клетки. Канцерогенез зависит как от механизма поступления канцерогенных веществ в клетку, так и от их количества внутри клетки.

Читайте так же:  Пришел штраф за административное правонарушение

Канцерогенные вещества могут быть разделены на три категории:

1) металлосодержащие частицы;

2) водорастворимые соединения металлов;

3) жирорастворимые соединения.

Наибольшей проникающей способностью обладают водорастворимые соединения. На механизм канцерогенеза сильно влияют рН и температура среды, наличие в клетке аминокислот. При рН Срочно?

Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Поведение токсикантов в природных средах

В окружающей среде токсиканты подвергаются различным изменениям:

— переносу на большие расстояния;

При этом степень опасности определяется рядом факторов, которые можно разделить на 4 группы:

1. Факторы, обусловленные свойствами загрязняющего вещества (элемента), такими как персистентность, растворимость, летучесть, способность сорбироваться почвой, мигрировать по профилю и т.д. Так, очень стойкие в окружающей среде пестициды могут переноситься ветром на большие расстояния, а также мигрировать по трофическим цепям. Некоторые токсиканты могут медленно сублимировать при комнатной температуре, т.е. переходить из твердого состояния в газообразное, минуя жидкое (пестициды из группы карбаматов).

2. Факторы, характеризующие территорию местности: площадь, вид и свойства почвы (тип, влагоемкость, рН, способность к самоочищению), покрытие растительностью, систему обработки почвы, рельеф местности и т.д. К примеру, на бедных подзолистых почвах с низкой биологической активностью опасность загрязнения значительно возрастает по сравнению, например, с черноземами, характеризующимися высокой буферной и самоочищающейся способностью. На равнинных территорих разрушающее действие дымовых газов в среднем меньше, чем на холмистых, где воздушный обмен затруднен.

3. Климатические условия, влияющие на скорость разложения (наличие и величина осадков, время и условия их выпадения, влажность воздуха и т.д.).

4. Факторы (применительно к пестицидам) – способы применения, объем, нагрузка на 1 га и уровень содержания в почве, кратность внесения, возможность кумуляции.

При воздушном (аэральном) загрязнении длительность пребывания токсиканта и возможность его перемещения зависят от скорости потока воздуха и турбулентности (смешивания) воздушных масс, а также направления и розы ветров. При аэральном загрязнении может иметь место фотохимический эффект (разложение под влиянием света). Этим эффектом объясняется более высокая концентрация некоторых пестицидов в лесных почвах по сравнению с почвами открытых участков, где разложение пестицидов идет быстрее под влиянием света. В воздушной среде некоторые токсиканты (например, диоксины) обладают способностью осаждаться на мелких частицах, нарпимер пыли, и прилипать к ней (явление адгезии), усиливая опасность загрязнения.

Особенность поведения токсикантов в водной среде заключается в их способности к высокой биоаккумуляции. К примеру, в каждом последующем звене пищевой цепи содержание ДДТ может увеличиваться примерно в 10 раз. Отношение содержания веществ в тканях гидробионтов к концентрации его в воде называется коэффициентом накопления. Например, в дафниях коэффициент накопления бензапирена составляет 13000, ДДТ – 23000, метилртути – 4000.

В водных объектах, как и в воздушной среде, токсиканты могут разлагаться под действием фотохимического эффекта (фотолиза). Важным фактором при этом выступает рН водной среды: чем выше рН, тем больше ускорение распада (за исключением диметинала). Однако фотолиз в очень мутной воде, куда проникновение солнечного света очень затруднено, является незначительным. Первичное воздействие ультрафиолетовой радиации вызывает разрыв эфирной связи с последующим образованием фенольного или гетероциклического энола из карбаматного эфира.

Особенно важное значение имеет поведение токсикантов в почве, так как почва – основное средство сельскохозяйственного производства и, таким образом, основной поставщик продуктов питания для человека и животных. От состояния почвы, ее буферной и самоочищающей способности зависит поведение токсиканта в системе «почва – растение – животное – человек – окружающая среда».

Токсические вещества в почве испытывают ряд превращений (рис. 1), определяющихся следующими факторами:

Основная же роль в деградации токсикантов принадлежит микробной компоненте почвы. Именно биологическая активность почв определяет ее самоочищающую способность.

Например, в условиях высокой биологической активности период полураспада пестицидов составлял менее 6 месяцев, в то время как те же пестициды в условиях с умеренной биологической активностью разлагались в течение нескольких лет. Деградация пестицидов наиболее активно происходит с мая по октябрь. В почвах под сельскохозяйственными культурами интенсивность деградации увеличивается по сравнению с парующими почвами.

Рис.1. Схема круговорота тяжелых металлов в почве

Одна из особенностей поведения токсикантов в почве – исключительно длинное пребывание их в этой среде.

Так, период полувыведения тяжелых металлов из почв в условиях лизиметров варьирует в зависимости от вида металла:

— для Zn – от 70 до 510 лет;

— для Cd – от 13 до 1100 лет;

— для Cu – от 310 до 1500 лет;

— для Pb – от 740 до 5900 лет.

Другая особенность поведения токсикантов в почве обусловлена ее сорбционной способностью, что имеет важное значение в биологическом круговороте токсикантов.

Компонентами почв, учавствующими в сорбции тяжелых металлов, являются:

— оксиды, главным образом железо и марганец, в меньшей степени – алюминий и кремний;

— органические вещества и живые организмы;

— карбонаты, фосфаты, фосфиды и основные соли;

К примеру, сорбционная емкость гуминовой кислоты в 500–900 раз выше, чем у кварца. Гуминовая кислота почвы, содержащей 4% гумуса, может сорбировать в расчете на 1 га:

— 17929 кг железа;

— 913 кг марганца.

На сорбционную способность влияет и механический состав почвы, определяя площадь поверхности частиц. Накопление токсичных веществ характеризуется коэффициентом загрязнения – отношением содержания вещества (элемента) в почве к фоновой концентрации данного вещества (элемента).

Читайте так же:  Основы экологии источники загрязнения окружающей среды

Коэффициент активного загрязнения определяется отношением подвижных форм тяжелых металлов к фоновой концентрации.

Из почвы токсиканты поступают в растения, вызывая их загрязнение. Активность накопления веществ (элементов) в растительных организмах характеризуется коэффицентом биологического поглощения (КБП) или транслокационным показателем – отношением содержания веществ в растении к концентрации в почве.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9658 — | 7398 — или читать все.

Загрязнение окружающей среды токсикантами

Понятия «вредное вещество» и «токсикант» – ключевые в экотоксикологии.

Вредное вещество – это инородный нехарактерный для природных экосистем ингредиент, оказывающий отрицательное влияние на них и живые организмы, обитающие в этих экосистемах.

Токсиканты – вещества или соединения, способные оказывать ядовитое действие на живые организмы. В зависимости от характера воздействия и степени проявления токсичности, т. е. способности этих веществ оказывать вредное воздействие на живые организмы, они классифицируются на две большие группы: токсичные и потенциально токсичные. По химической природе вредные вещества, или токсиканты, бывают неорганического происхождения (кадмий, ртуть, свинец, мышьяк, никель, бор, марганец, селен, хром, цинк и др.) и органического (нитразосоединения, фенолы, амины, нефтепродукты, поверхностно-активные вещества, пестициды, формальдегид, бенз(а)пирен и др.). Существует классификация опасности различных химических веществ, попадающих в окружающую среду. В зависимости от степени токсикологического воздействия химические вещества подразделяют на три класса (табл. 3.5).

Наиболее приоритетными для химико-токсикологического анализа являются тяжелые металлы (свинец, ртуть, кадмий, медь, никель, кобальт, цинк), обладающие высокой токсичностью и миграционной способностью.

Поведение этих токсикантов в различных природных средах обусловлено специфичностью их основных биогеохимических свойств: комплексообразующей способностью, подвижностью, биохимической активностью, минеральной и органической формами распространения, склонностью к гидролизу, растворимостью, эффективностью накопления [33]. По характеру взаимодействия с различными лигандами тяжелые металлы считаются промежуточными акцепторами между жесткими и мягкими кислотами [23]. В первом случае для них характерны низкие поляризуемость и электроотрицательность, высокая степень окисления и образование ионных связей, во втором – образование преимущественно ковалентных связей.

Определенная аналогия биогеохимических свойств некоторых тяжелых металлов позволила сгруппировать эти элементы и выявить общие закономерности их токсикологического воздействия на окружающую среду (табл. 3.6).

Примечания: В– высокая, У – умеренная, Н – низкая.

Так, например, медь и цинк характеризуются как наибольшей химической активностью, позволяющей считать их хорошими индикаторами терригенного стока, седиментации, так и высокой эффективностью накопления в водорослях и планктоне, что определяет их особую значимость для биоты [38]. Они являются главными составляющими многих металлоферментов, участвующих в природной селекции аэробных клеток, в окислительно-восстановительных процессах тканей, иммунной реакции, стабилизации рибосом и мембран клеток [43].

Никель и кобальт – биологически активные и канцерогенные. Сравнительно малая подвижность этих элементов обусловливает их достаточно равномерное распределение в природных средах.

Геохимические особенности свинца – малая подвижность и непродолжительное время жизни в атмосфере и фазе раствора природных вод. В поверхностных водах оно составляет несколько лет, а в глубинных – до 100 лет [7].

По химическим свойствам и специфике поведения в различных природных средах кадмий имеет определенную аналогию с цинком. Высокая токсичность и растворимость этого элемента обусловлены большим сродством к SH-группам [4]. В отличие от ртути сродство кадмия к кислороду выражено менее ярко, что объясняет образование его достаточно неустойчивых металлорганических соединений и определенную инертность в окислительно-восстановительных реакциях. Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий по сравнению с другими тяжелыми металлами является наиболее сильным токсикантом почв ( Cd > Ni > Си > Zn ) [24].

Ртуть – самый токсичный элемент в природных экосистемах. По токсикологическим свойствам соединения ртути классифицируются на следующие группы: элементная ртуть, неорганические соединения, алкилртутные (метил- и этил-) соединения с короткой цепью и другие ртутьорганические соединения, а также комплексные соединения ртути с гумусовыми кислотами [5]. Из этих соединений ртути наиболее токсичны для человека и биоты ртутьорганические соединения. Их доля в речных водах составляет 46% от общего содержания, в донных отложениях -до 6%, в рыбах – до 80–95%. Как неорганические, так и органические соединения ртути высокорастворимы.

Степень загрязнения окружающей среды токсикантами во многом определяется их химически активными миграционными формами и механизмом миграции.

Миграция элементов – это перенос и перераспределение химических элементов в земной коре и на поверхности Земли.

Видео (кликните для воспроизведения).

Сложность биогеохимических процессов, происходящих в атмосферном воздухе, атмосферных осадках, природных водах, донных отложениях, почвах, не позволяет высказать достаточно однозначной точки зрения на соединения тяжелых металлов, определяющих их подвижные формы, и преобладание одной из них в естественных и техногенных процессах. Тем не менее анализ фундаментальных работ позволил сделать следующее заключение: в атмосферном воздухе и атмосферных осадках тяжелые металлы находятся и мигрируют в газообразной и аэрозольной формах, а также в форме органических и неорганических комплексных соединений; в природных водах – в форме свободных ионов, моноядерных гидроксокомплексов, неорганических (сульфатные, хлоридные, карбонатные) и органических (фульватные, гуматные) соединений, взвешенных и коллоидных формах; в донных отложениях – преимущественно во взвешенных формах органического происхождения; в почвах – в водорастворимых ионообменных и непрочно адсорбированных формах.

Источники

Загрязнение окружающей среды токсикантами
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here